منابع مشابه
Relaxation properties in classical diamagnetism Relaxation properties in classical diamagnetism
It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a non...
متن کاملAnderson transition in disordered bilayer graphene.
Employing the kernel polynomial method (KPM), we study the electronic properties of the graphene bilayers with Bernal stacking in the presence of diagonal disorder, within the tight-binding approximation and nearest neighbor interactions. The KPM method enables us to calculate local density of states (LDOS) without the need to exactly diagonalize the Hamiltonian. We use the geometrical averagin...
متن کاملLong-range correlations in disordered graphene
The appearence of long-range correlations near the Dirac point of a Dirac-like spinor model with random vector potential is studied. These correlations originate from a spontaneously broken symmetry and their corresponding Goldstone modes. Using a strong-disorder expansion, correlation functions and matrix elements are analyzed and compared with results from a weak-disorder expansion. The local...
متن کاملMagnetism in disordered graphene and irradiated graphite.
The magnetic properties of disordered graphene and irradiated graphite are systematically studied using a combination of mean-field Hubbard model and first-principles calculations. By considering large-scale disordered models of graphene, I conclude that only single-atom defects can induce ferromagnetism in graphene-based materials. The preserved stacking order of graphene layers is shown to be...
متن کاملDisordered p-n junction in graphene
Graphene is a new material whose unique electronic structure endows it with many unusual properties [1]. A monolayer graphene is a gapless two-dimensional (2D) semiconductor with a massless electron-hole symmetric spectrum near the corners of the Brillouin zone, ǫ(k) = ±~v|k|, where v ≈ 10 cm/s. The concentration of these “Dirac” quasiparticles can be accurately controlled by the electric field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2007
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.75.235333